Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel

In this paper, a Jacobi-collocation spectral method is developed for Volterra integral equations of second kind with a weakly singular kernel. We use some function transformation and variable transformations to change the equation into a new Volterra integral equation defined on the standard interval [−1, 1], so that the solution of the new equation possesses better regularity and the Jacobi or...

متن کامل

Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind

Abstract This work is to analyze a spectral Jacobi-collocation approximation for Volterra integral equations with singular kernel φ(t, s) = (t − s)−μ. In an earlier work of Y. Chen and T. Tang [J. Comput. Appl. Math., 2009, 233: 938– 950], the error analysis for this approach is carried out for 0 < μ < 1/2 under the assumption that the underlying solution is smooth. It is noted that there is a ...

متن کامل

Convergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations

In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...

متن کامل

COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS

In this paper it is shown that the use of‎ ‎uniform meshes leads to optimal convergence rates provided that‎ ‎the analytical solutions of a particular class of‎ ‎Fredholm-Volterra integral equations (FVIEs) are smooth‎.

متن کامل

Supergeometric Convergence of Spectral Collocation Methods for Weakly Singular Volterra and Fredholm Integral Equations with Smooth Solutions

A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2010

ISSN: 0025-5718,1088-6842

DOI: 10.1090/s0025-5718-09-02269-8